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INTRODUCTION 

NATURAL convection heat transfer in rectangular enclosures 
heated from below has been the subject of many studies in 
recent years. Practical applications of such configurations 
are in electronic equipment and fluid-filled thermal storage 
tanks. The natural convection flows in fluids heated from 
below are inherently unstable [I, 21. The fluid remains 
stationary up to a critical value of the temperature direrence. 
Past the critical value, the onset of the motion depends on a 
balance of the viscous, buoyant, pressure and inertia forces. 

Most of the previous works in this area were focused on 
smooth-walled enclosures [2-71. Due to surface corrugation 
or mounting of circuit chips, the walls of the enclosure could 
be considered rough. Amin [g] studied the effect of placing 
adtabatic roughness elements at the bottom of a vertical 
enclosure with opposing hot and cold vertical walls. He 
concluded that roughness elements reduce the heat transfer 
rate across the enclosure. In the present study, a periodic 
array of roughness elements is mounted on the bottom hot 
horizontal wall (T$). The top horizontal wall is cooled (TF) 
and the two vertical walls are maintained adiabatic. This 
geometry is shown in Fig. I. The effects of the size of the 
roughness elements on heat transfer and fluid flow phenom- 
enon in the enclosure are studied in this note. 

FORMULATION AND NUMERICAL METHOD 

In the present work it is assumed that the natural con- 
vection flow of the Newtonian fluid in the enclosure of inter- 
est is at steady-state, is two-dimensional, and is laminar. It 
is also assumed that the Boussinesq approximation is valid, 
that the fluid is a radiatively non-participating medium and 
that viscous dissipation and compressive work are negligibly 
small. The radiation heat transfer between the walls is not 
being considered in this study. 

Based on the above modeling assumptions, the non- 
dimensional governing equations for the conservation of 
mass, momentum and energy are 
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FIG. I. Investigated geometry. 
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NOMENCLATURE 

A* amplitude of roughness element, see Fig. I a* s*-component of velocity 
A dimensionless amplitude of roughness Ll dimensionless s-component of velocity, u*H/v 

element, A*/H I,* JJ*-component of velocity 

CP constant pressure specific heat of fluid I, dimensionless y-component of velocity, u*H/v 

9 magnitude of acceleration due to gravity W width of enclosure 
H height of the enclosure x*, y* spatial coordinates, see Fig. I 
k thermal conductivity of fluid .K, y dimensionless spatial coordinates, x*/H, y*/H. 
NU average Nusselt number of the enclosure, see 

equation (3) Greek symbols 
P* motion pressure thermal diffusivity of fluid 
P dimensionless motion pressure, P*H’/pv’ ; coefficient of thermal expansion of fluid 
Pr Prandtl number, pC,,/k s* period of roughness elements 

RaH Rayleigh number, g/I (Tz - TF)H ‘jva 6 dimensionless period of roughness elements, 
T* temperature 6*/H 
T dimensionless fluid temperature, E tolerance parameter 

(T*-G)I(T:,-G) P dynamic viscosity of fluid 

G hot wall temperature v kinematic viscosity of fluid 

TY cold wall temperature P density of fluid. 

where P. the ‘motion pressure’ is defined as the actual pres- 
sure in the fluid less the pressure when the fluid is at rest 
at the reference temperature. The temperature of the cold 
vertical wall of the enclosure, Tr. serves as the reference 
temperature in the buoyancy force term in equation (1~). 

The corresponding boundary conditions are described as 
follows : 

u=Ll=o , on all solid walls W 

dT 
-CO 
as ’ 

on the left vertical wall (2b) 

T= 0, on the top horizontal wall UC) 
i3T 
-TO 
as ’ 

on the right vertical wall (Id) 

T= I, on the bottom horizontal wall. (W 

The overall heat transfer across the enclosure is expressed 
in terms of the average Nusselt number. The computation 
merely involves the integration of the local Nusselt number 
distribution along either the isothermal cold horizontal wall 
or the isothermal hot horizontal wall. For convenience, the 
cold wall is chosen for this purpose since it is always a plane 
surface, even in an enclosure containing roughness elements. 
The average Nusselt number in nondimensional form is 
defined as Nu=I -~ s ““” 
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The governing equations for the present study were solved 
by using the finite element code NACHOS II, developed by 
Gartling [9, IO]. This is a general purpose finite element code 
designed to solve the two-dimensional Navier-Stokes and 
energy equations for both steady-state and transient flows. 
A detailed description of the code has been documented 
elsewhere 19, IO], and will not be discussed here. Non-uni- 
form grids were used such that more elements were packed 
into regions of large gradients of velocity and/or tem- 
perature. 

For convergence criteria, NACHOS II uses the discrete 
norms defined by 

4-+ I = & 2 (T:+‘-T;)* I”. mdl 1 (4) 
i- I 

In equation (4), the subscript max indicates the maximum 
value of the variable found at the (n+ l)th iteration, and N 
is the total number of nodal points. For convergence, the 
following inequalities were satisfied : 

df+, GE’ and d,T,, <Ed (5) 

where E, the tolerance parameter, was set to be 0.001. 

RESULTS AND DISCUSSION 

To check the accuracy of the NACHOS II code for the 
present problem, several cases were run at different values of 
Rayleigh number for a smooth-walled enclosure with aspect 
ratio (W/H) = I .O. The computed values of the average Nus- 
selt number for these cases were compared with the published 
results by Ozoe CI al. [4]. This comparison is shown in Fig. 
2. It can’be seen that the results obtained by the present 
method are in good agreement with those of Ozoe et al. [4]. 

As discussed earlier, the natural convection flow of the 
present problem is inherently unstable. It was very difficult 
to obtain a stable solution at high values of Rayleigh 
numbers. Due to the limitation of the computer resources, 
the present study was conducted up to a maximum Rayleigh 
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FIG. 2. Comparison of the results obtained by the present 
method with Ozoe ef al. [4] for a smooth-walled enclosure. 



Technical Notes 2709 

a. 0625 - _̂ _ aRvEc / CURVEA: A=1 
I 

CURVE 8: A = k~. 1~b 
CURVE C: A = 0.25 
CURVE D: A = 0.375 
CURVE E: SIIOOTH WALL 

RAYLEIGH NUtlEER, ( R. ,.,I 

FIG. 3. Effect of amplitude on Nusselt number. 

number of IO’. A square enclosure (aspect ratio = 1.0) with 
a fluid of Prandtl number, Pr = 10.0, was used. The overall 
heat transfer rate and fluid flow phenomenon in the enclosure 
for various values of roughness element period and ampli- 
tude were investigated. 

The results of this study show that in general, the presence 
of roughness elements on the hot horizontal wall mcreases 
the overall heat transfer rate across the enclosure in com- 
parison with a corresponding smooth-walled enclosure. Fig- 
ure 3 shows the effect of changing the amplitude (height) of 
roughness elements on the values of Nusselt number. It can 
be seen that at low values of Rayleigh number (conduction 
dominated flow), the Nusselt number increases with increase 
of roughness amplitude. This is as expected. The heat transfer 
across the enclosure is inversely proportional to the thermal 
resistance between the hot and cold walls. For conduction- 
dominated heat transfer, the thermal resistance is directly 
proportional to the distance between the hot and cold walls. 
So, increasing the amplitude decreases the effective distance 
between the walls and therefore, more heat transfer occurs. 
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Figure 3 also shows that in the range of Rayleigh numbers 
of approximately 4.5 x IO’-1.8 x IO’, heat transfer is more 
in a smooth-walled enclosure than that of a rough-walled 
enclosure. From the streamline and isotherm contours (not 
shown here due to space limitation) of the enclosures, it is 
observed that the presence of roughness elements delays the 
onset of convection motion. Therefore, heat transfer is more 
in the smooth-walled enclosure in this range. Beyond this 
range, the roughness elements increase the heat transfer rate 
across the enclosure except for cases with A = 0. I25 (curve 
B), which will be discussed later. The heat transfer increases 
because the presence of roughness elements creates a stronger 
fluid motion inside the enclosure. This is verified by com- 
paring the values of streamfunctions in the corresponding 
enclosures. 

A very interesting feature occurred in this study. For 
smooth-walled enclosures (A = 0) the fluid flow inside the 
enclosure was confined to a single cell over the range of 
investigated Rayleigh numbers. As the amplitude, A, was 
gradually increased to 0.0625 and 0. I (not shown in Fig. 3), 
the Row remained uni-cellular. The Nusselt numbers also 
remained close to the values of smooth-walled enclosures. 
This can be seen by comparing curve A and curve E in Fig. 
3. However, when the amphtude was increased to a value of 
0.125, the natural convection flow inside the enclosure 
became bi-cellular at a Rayleigh number of about 8 x IO’. 
With a further increase of Rayleigh number for the same 
amplitude (A = 0.125). the flow with two cells eventually 
transformed to a flow with four cells at a Rayleigh number 
of about 3 x 10’. In the range of Rayleigh numbers from 
3 x IO” to IO’, the Row remained quadru-cellular. 

From the isotherm and streamline contours of the enclos- 
ure with A = 0.125, it is observed that the heat transfer rate 
is greatly reduced at higher values of Ra,, due to multicellular 
fluid motion inside the structure. Up to a value of 
Ra,, = 3 x 104, the heat transfer across the enclosure 
remained conduction dominated. An example of fluid 
motion (streamlines) with four cells and the corresponding 
isotherms is shown in Fig. 4. It can be seen that the creation 
of four cells divides the entire enclosure into two regions 
along a horizontal axis of symmetry. The axis of symmetry 
is a little above the mid-height of the enclosure. The creation 
of these two opposing regions is the cause for such a drastic 
reduction of heat transfer in this particular geometry. Several 
cases for an enclosure with A = 0.25, were run to study the 

(a) Streamlines (bl Isotherms 

FIG. 4. Streamlines (a) and isotherms (b) for RaH = IO’, A = 0.125, 6 = 0.25. 
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effect of changing the period, 6, from 0.25 to 0.5. A small 
decrement in heat transfer is observed in these cases. The 
maximum decrement obtained was about 4%. 

In summary, the roughness elements are generally found 
to increase the heat transfer rate across the enclosure both 
at low and high Rayleigh numbers. The enhancement is more 
at low Rayleigh numbers in comparison with the cases with 
higher Rayleigh numbers. The maximum heat transfer 
enhancement (with respect to a corresponding smooth- 
walled enclosure) in this study is found to be 57%. This is 
obtained at RQ” = 2 x lo3 for an enclosure with A = 0.375 
and b = 0.25. In a transitional range between theconduction- 
dominated and convection-dominated cases, the presence of 
roughness elements delays the onset of convection motion. 
This effect reduces the heat transfer rate across the enclosure. 
For an enclosure with A = 0.125, the roughness elements 
generate a fluid motion with four cells at higher Rayleigh 
numbers. This effect drastically reduces the heat transfer rate 
across the enclosure. The maximum heat transfer decrement 
(with respect to a corresponding smooth-walled enclosure) in 
this geometry is found to be 61%. at a value of Ra, = 3 x 104. 
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INTRODUCTION 

SIMULTANEOUSLY developing laminar flow and heat transfer 
in ducts has been widely analyzed in the past (see review by 
Shah and London [I]). More recent papers have shown 
that for accurate numerical solution of the classical Graeiz 
problem (e.g. Conley et al. [2] and Poirier and Mujumdar 
[3]) or for simultaneously developing flow and heat transfer, 
Jensen [4], a very fine grid is needed to be concentrated at 
the tube inlet and wall where large gradients occur. Thus, 
most of the previous numerical studies are questionable at 
small non-dimensional distances because a variety of sim- 
plifications and coarse grids were used to obtain the 
solutions. Because the entrance length is significant for large 
Prandtl numbers (Pr 2 50), accurate entrance length corre- 
lations for heat transfer and pressure drop are needed. 
However, very few correlations are available that can pre- 
dict the local and/or average quantities. For example, the 
Churchill and Ozoe correlation [5], although covering the 
complete Pr and z+ range, can predict only the local Nusselt 
number for the two limiting cases of constant wall tempera- 
ture and constant wah heat flux, and its accuracy is known to 

t To whom any correspondence should be sent. 

degenerate for larger z+ [I]. Therefore, the present investiga- 
tion was initiated (i) to obtain accurate local and average 
Nusselt numbers for laminar flow through a straight cir- 
cular tube with the general convective boundary condition, 
particularly very close to the entrance, and (ii) to develop 
accurate correlations for both local and average Nusselt 
numbers and friction factors, covering the complete Pr, Bi, 
and z+ range. 

ANALYSIS 

The non-dimensional governing equations for simul- 
taneously developing laminar flow and heat transfer in a 
circular tube are : 

f;(RV,)+z=O 

(2) 

(3) 


